R

Carbon Code Snippets

I recently learned today of carbon and it is absolutely fantastic. In my own words, carbon provides a terminal-like formatting for your code snippets, which can be included in blog posts and the like. It just makes things easier to read, in my opinion. Where my head goes is taking a snippet that looks like this: options(stringsAsFactors = FALSE) ## load the packages library(wakefield) ## generate a dataset of random users users = r_data_frame( n = 500, id, state, date_stamp(name="registration_date"), dob, language ) users$ID = as.

Convert R dataframe to JSON

Below is a post aimed at my future self. Be forewarned. The idea is to take an R data frame and convert it to a JSON object where each entry in the JSON is a row from my dataset, and the entry has key/value (k/v) pairs where each column is a key. Finally, if the value is missing for an arbitrary key, remove that k/v pair from the JSON entry.

Python, Rodeo, and Tableau Data Extract API

Many moons ago, I wrote some code to build a Tableau Data Extract from the work that I had munged together in python. I figured it was time to update the code since I recently discovered that the Tableau API has changed. For a link to that old code, refer to the Jupyter Notebook in this repo. Assumptions and Requirements First off, I am using a Macbook, and while I believe things are getting easier on Windows machines with respect to coding, I prefer to write Terminal commands over point-and-click installs.

Prototype Neo4j Development with Cloud9 and the Graphgen Tool

If you have skimmed through some of my other posts on this blog, it’s probably not surprising that I love using Neo4j in my projects. While you certainly can develop and work through your ideas locally, if you are like me, you probably have a few pet projects going at once, some of which you might want to share publicly. This post aims to highlight how quickly you can get up and running using Cloud9, a cloud-based development environment.

Neo4j Import with R

Below is a quick writeup on how I use R and RNeo4j to munge my data and throw “larger” datasets into Neo4j. In short, I am fairly capable in R, so I prefer to use it to do the heavy lifting. All I am doing is calling the neo4j-shell tool via ?system command. This post runs through how I have used this approach in some of my recent projects. I used this process for a project that I am currently working on at work, where 3+ million nodes and nearly 9 million relationships.

Using DiagrammeR to help with Data Modeling in Neo4j

I have been watching the DiagrammeR package for a while now, and at this stage, it’s pretty impressive. I encourage you to take a look at what is possible, but be assured the framework is there to do some really awesome things. One use-case that applies to me is that of data modeling an app within Neo4j. There are already some tools out there, namely: Arrows Graphgen by GraphAware And you can always use graphgists The last link above is a sample graph gist that is a decent overview.

Playing Around with the Prismatic Topic Graph API using R

The Prismatic Team has slowly been rolling out a very cool API. You can read all about it here. At the same time, I have been using this as an opportunity to learn how to create an R package. After today’s API update to identify the relevant content related to a specific topic, I wanted to highlight what is possible with a few lines of code using the prismaticR package.

rmongodb Tutorial

This is a quick document aimed at highlighting the basics of what you might want to do using MongoDB and R. I am coming at this, almost completely, from a SQL mindset. Install The easiest way to install, I believe, is library(devtools) install_github(repo = "mongosoup/rmongodb") Connect Below we will load the package and connect to Mongo. The console will print TRUE if we are good to go. library(rmongodb) # connect to MongoDB mongo = mongo.

Learn more about the visitors that complete Goals on your Website

About the post Just like in the previous entry, we will be using R to access our school’s Google Analytics data through their API. In this post, I want to highlight how we can figure out when a vistor to our website completes our a goal on our site. In my case, I am interested in learning more about how, and when, prospective students (and/or parents) complete our information request form.

Environment Variables in RStudio on Mac

I recently asked a question on Stack Overflow on the best way to set environment variables on a Mac for use within an RStudio session. It wasn’t as straightforward as I would have thought, so I wanted to share this quick post as a way to remind my future self of a quick way to solve the issue. Overview Generally, you can set environment variables by: export YOUR_VAR=abc123 within a terminal.