Neo4j Import with R

Below is a quick writeup on how I use R and RNeo4j to munge my data and throw “larger” datasets into Neo4j. In short, I am fairly capable in R, so I prefer to use it to do the heavy lifting.
R
Author

Brock Tibert

Published

March 2, 2016

Neo4j Import with R

Below is a quick writeup on how I use R and RNeo4j to munge my data and throw “larger” datasets into Neo4j. In short, I am fairly capable in R, so I prefer to use it to do the heavy lifting.

All I am doing is calling the neo4j-shell tool via ?system command. This post runs through how I have used this approach in some of my recent projects. I used this process for a project that I am currently working on at work, where 3+ million nodes and nearly 9 million relationships.

Basic project structure

Below is a basic project structure when I am combining R and Neo4j

neo-project/
├── R
│   ├── 1-get-data.R
│   ├── 2-clean-data.R
│   └── 3-import-data.R
├── README.md
├── cql
│   ├── constraints.cql
│   └── import-nodes.cql
└── data
    ├── file1.csv
    └── file2.csv

3 directories, 8 files

There are many ways to organize projects, but I recommend that you stick with one that works for you.

General Process

  1. Collect, clean, build out my datasets using R
  2. Save the datasets as csv files
  3. Import the data into Neo4j via R and neo4j-shell

On the third step above, I am using a helper function, shown below.

Helper Function

### helper function to load a CQL file into neo4j shell
build_import = function(neo_shell = "~/neo4j-community-2.3.1/bin/neo4j-shell",
                        cypher_file) {
  cmd = sprintf("%s -file %s", neo_shell, cypher_file)
  system(cmd)
}

In my case, I am simply running a community edition, and point to the path of the neo4j-shell tool. If you get an error, you may need to ensure that:

  1. The database is running
  2. You are pointed to the proper location for the shell tool

After that, usage is simple within your R script.

build_import(cypher_file = "../cql/import-geo.cql")

The RNeo4j package is great, and in particular, I love the ?clear function which helps us rapidly prototype our data imports, the data model, etc.

Example Session

Below is an example session of what the R script 3-import-data.R might look like.

###############################################################################
## Load the csvs through Cypher and the terminal
## in a non-Windows environment
###############################################################################

options(stringsAsFactors = FALSE)

## the packages
library(RNeo4j)

## connect to a running db server
graph = startGraph("http://localhost:7474/db/data/",
                   username = "neo4j",
                   password = "password")


###############################################################################
## helper function
###############################################################################

## cypher helper function to load against the shell tool
build_import = function(neo_shell = "~/neo4j-community-2.3.1/bin/neo4j-shell",
                        cypher_file) {
  cmd = sprintf("%s -file %s", neo_shell, cypher_file)
  system(cmd)
}


###############################################################################
## clear database for testing
###############################################################################

## clear the entire database
clear(graph, input = FALSE)

###############################################################################
## load data - 1 file per import
###############################################################################

build_import(cypher_file = "../cql/constraints.cql")
build_import(cypher_file = "../cql/import-nodes.cql")